

PII: S0040-4020(96)00399-7

Synthetic Applications of 2-Aryl-4-piperidones. XI¹ A New Synthesis of the E-Azaeburnamine Skeleton

Isabel López, Anna Diez, Mario Rubiralta*

Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona. 08028- Barcelona. Spain

Abstract: 17-Azaeburnamine type compound 2 is synthesized by closure of ring E on 1-aminoindolo[2,3-a]quinolizidine 8. Compound 8 is obtained by a Neber rearrangement on the corresponding indolo[2,3-a]quinolizidin-2-one, or by K'BuO cyclisation of 3-amino-2-(2-indoly1)piperidin-4-one 16. In both cases the starting substrate is 4-piperidone 3. The synthesis of the new [ABED] ring system 6 is also described. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

In the context of our studies on the synthesis of indolo[2,3-a]quinolizidine alkaloids² and biologically active 3-aminopiperidines¹ from 2-aryl-4-piperidones,³ we have now focused our attention on the preparation of 17-aza⁴ derivatives of eburnamonine.⁵ So far, only two E-azaeburnamine compounds have been described, the 16-azaderivative 4⁶ and the 17-azaeburnamonine derivative 5.⁷ Winterfeld described the synthesis of the basic skeleton of 17-azaeburnamonine (5) through a nucleophilic opening of a cyclopropane ring with generation of ring E by formation of the N17-C20 bond.

Scheme 1

In our case, we envisaged the synthesis of compound 2 either by formation of the C ring on an [ABED] tetracycle 6, which would be a new heterocyclic system, or by closure of ring E on a 1-aminoindolo[2,3-a]quinolizidine 8. Both of the key structures 6 and 8 could be prepared from 2-(2-indoly1)-4-piperidone 3, by use of the Neber rearrangement 1 for the amination, and the K'BuO cyclisation 2 for the indoloquinolizidine formation.

Scheme 2

The first syntheses of 1-aminoindolo[2,3-a]quinolizidines as potential intermediates to E-azaeburnamine derivatives have been described recently. They were achieved either by closure of the piperidine ring, 8 or by introduction of the amino group on an indoloquinolizidine via reduction of an oxime. 9 In the latter case, the 1-aminoindoloquinolizidines obtained were used to prepare E-homoazaeburnane systems, whose biological activities were tested on the tyrosine hydroxylases of rats and mice. 9

Finally, the synthesis of 1-amino-9,10-dimethoxybenzo[a]quinolizidines¹⁰ and of 2,3-dihydro-1H-pyrimidino[3,4,5-l,m] β -carbolines ([ABCE] ring system),¹¹ both related to our target structure, have also been described.

RESULTS AND DISCUSION

In view of the novelty of tetracycle 6, we first planned to obtain compound 2 by closure of ring C in the last step. The starting 2-indolylpiperidine 9¹² was alkylated with benzyl iodoethyl ether ¹³ to give piperidine 10 (Scheme 3). Surprisingly, the usual aqueous acid treatment to hydrolyse these acetals ^{1,14} led only to complex mixtures. ¹⁵ Therefore, the acetal function of compound 10 was converted to the corresponding dithioacetal 11 by treatment with propanedithiol in the presence of BF₃.Et₂O. As expected in these conditions, the hydroxy group was partially deprotected ¹⁶ yielding a variable proportion of alcohol 12, which was benzylated back to 11. Treatment of dithioacetal 12 with (CF₃COO)₂IC₆H₅ in CH₃CN-H₂O (9:1) ¹⁷ led to 2-indolyl-4-piperidone 3 in 96% yield.

The most characteristic spectroscopic data of compound 3 were an absorption at 1703 cm⁻¹ in its IR register, and a signal at δ 208.5 in the ¹³C NMR spectrum, due to the carbonyl function. In addition, the methine proton geminal to the indolyl group appeared as a deshielded triplet (δ 5.00, J = 3 Hz) in its ¹H NMR spectrum, which implies an axial disposition for the indolyl substituent. We had observed this unusual conformation previously as being characteristic of 2-(1-phenylsulfonyl-2-indolyl)-4-piperidones. ¹⁸

Reaction of piperidone 3 with NH₂OH.HCl in DME in the presence of K_2CO_3 afforded a 1:1 mixture of oximes 13 and 14, which were isolated by column chromatography. The stereochemistry of compounds 13 and 14 was deduced from the ^{13}C NMR data. Thus, oxime (Z)-13 presented signals at δ 29.1 and 29.2 for C-3 and C-5, and (E)-14 at δ 36.7 (C-3) and 23.6 (C-5) as a consequence of the shielding effect of the oxime

hydroxy group on six-membered rings. Both oximes showed a triplet at $\delta \sim 4.60$ corresponding to 2-H in their H NMR spectra, which indicated again the axial disposition of the indolyl substituent. Oximes 13 and 14 were tosylated independently with TsCl and K_2CO_3 in THF. After completion of the reaction was verified by the and NMR, the tosyloximes were made to react with 2 equivalents of KOEt in dry EtOH in the presence of a dessicating agent (anhydrous Na₂SO₄ or MgSO₄). Tosyloxime (Z)-13 gave a 4:1 mixture of 5-aminopiperidines cis- and trans-15, which were isolated by column chromatography. In the 13 C NMR spectra, the most significant data for the 5-aminopiperidines 15 were two methine carbons corresponing to C-2 (δ 57.4 for cis-15 and δ 57.3 for the trans isomer) and to C-5 (δ 50.1 for cis-15 and δ 53.6 for trans-15), and the quaternary acetal signal for C-4 (δ 100.5 for cis-15 and δ 98.4 for trans-15). The H NMR complete signal assignment of both isomers was inferred from 2D NMR experiments (Table 1). In both cases, the indolyl substituent was equatorially disposed, and the main difference between the two isomers was the signal multiplicity of 5-H, which indicated that the amino group was axial in the major cis-isomer and equatorial in trans-15.

Reagents and conditions: (i) $ICH_2CH_2OCH_2Ph$ (1.1 equivalents), K_2CO_3 acetone, reflux, 48 h (98%); (ii) $HS(CH_2)_3SH$, $BF_3.Et_2O$, CH_2Cl_2 , r.t., 5 days (82%); (iii) BnBr (1.2 equivalents), NaH (1.2 equivalents), THF, room temperature, 16 h (65%); (iv) $(CF_3CO_2)_2IC_6H_5$, $CH_3CN:H_2O$ (1:1), r.t., 1 h (96%); (v) $NH_2OH.HCl$, K_2CO_3 , DME, reflux, 1.5 h (71%); (vi) TsCl, K_2CO_3 , THF, r.t., 48 h; (vii) KOEt, dry EtOH, Na_2SO_4 , r.t., 2 h.

Compound	cis-15	trans-15	cis- 16	
2-H _a	4.17 dd (11,2)	4.26 dd (12,3)	4.60 s	
3-H _a	1.72 dd (12,11)	1.70 dd (13,12)		
3-H _e	2.15 dt (12,2)	2.42 dd (13,3)	2.95 s	
5-H _a		3.03 dd (11,4)	1.83 br t (11)	
5-H _e	2.98 br s		1.90-2.00 m	
6-H _a	2.65 dd (12, 3)	2.31 t (11)	2.28 td (11,3)	
6-H _e	3.11 dd (12, 2)	3.15 dd (11, 4)	3.05 ddd (11,4,2)	
NH ₂	masked	1.85 br s	1.50 br s	
NCH ₂	1.90 dt (12,3) 2.56 ddd (12,11,6)	1.95 m 2.55 ddd (12,11,6)	1.90-2.00 m 2.65 ddd (12,11,6)	
CH ₂ OBn	3.30-3.50 m	3.30-3.35 m 3.35-3.45 m	3.30-3.60 m	
CH ₂ Ph	4.37 s	4.38 s	4.35 s	
CH ₃ CH ₂ O	1.15 t (7) 1.30 t (7)	1.05 t (7) 1.30 t (7)	1.15 t (7) 1.35 t (7)	
CH ₃ CH ₂ O	3.30-3.50 m 3.70-3.80 m	3.44, 3.53, 3.63, and 3.77 (4 m)	3.50-3.60 m	

Table 1. ¹H NMR (500MHz) data of aminopiperidines 15 and 16.a,b,c

When tosyloxime (E)-14 was used as the reaction substrate, usually only cis-3-aminopiperidine 16 was isolated, which was identified on the basis of its spectral data and by comparison with the data previously obtained for 15. In this case the amino group was axial and the indolyl substituent equatorial, as expected. However, in one experiment the formation of 3-aminopiperidine trans-16 was detected.

In order to achieve the closure of ring E, the indole protecting group of aminopiperidine *cis*-16 was removed (Scheme 4), the resulting aminopiperidine 17 was methoxycarbonylated, and the carbamate 18 was treated with NaH. The formation of the tetracyclic compound 19 was demonstrated by the loss of the indole NH proton and of the methoxy group signals in the NMR spectra. The most characteristic data of compound 19 were: i) the shielding of the carbonyl signal in the 13 C NMR spectrum ($\Delta\delta$ = +5.6); ii) the deshielding of the indole 3-H proton ($\Delta\delta$ = -0.15), and the presence of two methine protons as broad singlets at δ 3.73 (8a-H) and δ 3.82 (12a-H) in the 14 H NMR spectrum.

Methylation of 19 with NaH and CH₃I yielded compound 20, which was treated with excess BF₃.Et₂O and Me₂S to achieve the debenzylation and the carbonyl deprotection. From the reaction, two compounds were isolated, which were identified as the hydroxy ketone 21 and the hydroxy enol ether 22. Thus, piperidone 21 showed two carbonyl absorption bands at 1723 (C-9) and 1693 (NCON) cm⁻¹ in its IR spectrum, and signals at δ 150.8 (NCON) and 203.0 (C-9) in its ¹³C NMR spectrum. In the ¹H NMR spectrum, the methine protons of the E/D ring junction appeared as two doublets (J = 6 Hz) at δ 4.12 (8a-H) and δ 4.91 (12a-H). Compound 22 showed an intense absorption at 1688 cm⁻¹, corresponding to both the

a. Aromatic protons were about the same for the three compounds: 6.85 ± 0.5 (s, 1H, In-3H); 7.20-7.53 (m, 11H), 7.75 ± 0.5 (d, J = 7 Hz, 2H); 8.30 ± 0.5 (d, J = 7 Hz, In-7H).

b. Assignments are confirmed by COSY experiments.

c. Coupling constants are given in brackets (Hz).

carbonyl group (NCON) and the enol ether double bond, and an alcohol band in its IR spectrum. The presence of an olefine proton (δ 4.58) in the ¹H NMR spectrum, together with a methine carbon (δ 93.8) in the ¹³C NMR record were diagnostic of the structure of 22, which was corroborated by the molecular peak at m/z 341 in the MS register.

The cyclisation of compounds 21 and 22 to obtain the target pentacyclic structure type 2 was assayed by tosylation of the hydroxy group and subsequent base treatment. The formation of the tosylate was checked by tlc before addition of LDA under a variety of experimental conditions. Unfortunately, in every case the base treatment led only to decomposition products.

Reagents and conditions: (i) 10% aqueous NaOH, EtOH, reflux, 5 h (39%); (ii) 1. NaH, THF, 0°C, 15 min. 2. CICO₂CH₃, 0°C, 3h (quantitative); (iii) NaH, THF, 0°C, 3 h (quantitative); (iv) 1. NaH, THF, 0°C, 15 min. 2. CH₃I (0.1 equivalents), room temperature, 2 h (quantitative); (v) Me₂S (30 equivalents), BF₃.Et₂O (10 equivalents), CH₂Cl₂, 30°C, 18 h (46%).

Scheme 4

In view of this result, we turned our attention to the preparation of 1-aminoindolo[2,3-a]quinolizidine 8 (X = OEt, OEt). We first tested on the 5-aminopiperidine series whether the K^IBuO direct cyclisation of N-hydroxyethyl-2-[1-(phenylsulfonyl)-2-indolyl]piperidines² would work in the presence of the primary amino group. Thus, piperidine cis-15 was debenzylated, and the resulting aminoalcohol 23 was made to react with 2 equivalents of K^IBuO in dry THF at 0°C for 30 min. As expected, a 1:1 mixture of 3-aminoindolo[2,3-aminoindolo]

a]quinolizidine 24 and 11-amino-7,8,9,10,11,12,13,13a-octahydropyrido[1',2';1,2]pyrazino[4,3-a]indole 25 was obtained, in 50% yield (Scheme 5). However, using the same reaction sequence, 3-aminopiperidine cis16 gave a 1:3 mixture of 1-aminoindolo[2,3-a]quinolizidine 8 and pyridopyrazinoindole 27 in only 33% yield.

Reagents and conditions: (i) Me_2S , $BF_3.Et_2O$, CH_2Cl_2 , $30^{\circ}C$, 18h (23, 40% yield; 26 43% yield). (ii) K'BuO, THF, $0^{\circ}C$, 30 min (24:25 = 1:1, 50%; 8:27 = 1:3, 33%).

Scheme 5

Indoloquinolizidines 24 and 8 had a *trans* C/D relationship, and the amino group of each was in a *cis* orientation with respect to the C12a-C12b bond, as shown by their spectral data. Thus, Bohlman bands were observed in the IR registers; the chemical shift of the angular 12b-H was below δ 3.8 (δ 3.45 for 24; δ 3.74 for 8) in the ¹H NMR spectra, indicating its *anti* relationship with the nitrogen lone pair; and C-7 ¹³C NMR chemical shift was δ 21.9 for compound 24, and δ 21.7 for 8.¹⁹ The axial orientation of the amino group in compound 8 was shown both by the ¹H NMR signal multiplicity of the geminal proton 1-H, which was a broad singlet (δ 3.30), and by a " γ -gauche" effect exerted by the axial C-1 amino group on carbon C-3 ($\Delta\delta$ = -6.5) in the ¹³C NMR spectrum (see Table 2). A similar ¹³C NMR shielding effect was observed on C-1 in 3-aminoquinolizidine 24 ($\Delta\delta$ = -6.1), which proved the axial orientation of the amino group in compound 24.

The most important ¹H NMR datum used for the structural determination of pyridopyrazinoindoles 25 and 27 was a singlet at δ 6.20 (25) and δ 6.26 (27) corresponding to the C-3 indole proton (1-H). The axial orientation of the amino group provoked a ¹³C NMR shielding effect on C-13 ($\Delta\delta$ = -6.5) in compound 25, and on C-11 ($\Delta\delta$ = -6.9) in 27, as shown by comparison to their unsubstituted analogue III.

Table 2. ¹³C NMR data of aminoindoloquinolizidines 8, 24, 31, and of aminopyridopyrazinoindoles 25 and 27.

I. R₁ = R₂ = H; X = OCH₂CH₂O (ref. 2a)
II. R₁ = NH₂; R₂ = H; X = H,H (ref. 7)
24. R₁ = H; R₂ = NH₂; X = OEt,OEt
8. R₁ = NH₂; R₂ = H; X = OEt,OEt

III. $R_1 = R_2 = H$; $X = OCH_2CH_2O$ (ref. 2a) 25. $R_1 = H$; $R_2 = NH_2$; X = OEt,OEt 27. $R_1 = NH_2$; $R_2 = H$; X = OEt,OEt

Compound	I (ref. 2a)	II (ref. 7)	24	8	31	III (ref. 2a)	25	27
C-1	39.1	48.9	33.0	52.5	55.9	95.4	95.4	95.0
C-2	107.2	30.9	100.5	100.6	100.0	119.7	119.8	119.7
C-3	34.8	20.9	50.7	28.3	29.2	120.1	120.3	120.2
C-4	52.8	52.9	57.2	53.4	53.2	120.7	120.8	120.5
C-5						108.6	108.6	108.5
C-5a						138.0	128.0	128.3
C-6	52.3	52.8	52.3	51.9	51.5			
C-7	21.6	21.2	21.9	21.7	21.9	42.0	42.0	41.7
C-7a	127.2	127.4	127.3	127.3	masked			
С-7ь	108.1	110.4	108.7	110.3	masked			
C-8	118.1	118.0	118.1	117.8	117.7	51.7	51.4	51.2
C-9	119.4	119.1	119.5	119.3	118.5			
C-10	121.4	121.3	121.5	121.3	120.7	53.1	57.2	52.2
C-11	110.8	111.1	110.7	111.1	110.9	34.8	50.6	27.9
C-11a	134.1	136.3	134.3	132.9	masked			
C12						106.9	100.1	100.3
C-12a	136.0	133.2	136.0	136.4				
C-12b	57.0	63.6	55.9	60.1	60.9			
C-13						39.4	32.9	53.0
C-13a						57.7	56.6	61.3
C-13b						135.9	136.0	135.2
CH₃CH₂O			15.4 15.6	15.3 15.5	15.5 16.0		15.3, 15.6	15.3 15.6
О <i>С</i> Н ₂	64.4		55.2 55.5	55.0 55.7	57.8 58.5		54.9 55.2	54.9 55.2

Reagents and conditions: (i) NH₂OH.HCl, K₂CO₃, DME, reflux, 1.5 h (93%); (ii) TsCl, K₂CO₃, THF, r.t., 48 h; (iii) KOEt, dry EtOH, Na₂SO₄, r.t., 2 h.

Scheme 6

Alternatively, we performed the Neber rearrangement on indolo[2,3-a]quinolizidin-2-one **28**² (Scheme 6). The oximination of compound **28** followed by tosylation of the resulting 1:1 mixture of (E) and (Z)-**29**, ²⁰ and final KOEt treatment of the tosyloximes **30**, yielded a 1:4:1.4 mixture of aminoindoloquinolizidines **24**, cis-**8**, and trans-**31** (Scheme 6). The equatorial disposition of the amino group in the new 1-aminoindolo[2,3-a]quinolizidine **31** was inferred from the trans diaxial coupling constant (J_{12b-1} = 10 Hz) of the doublet at δ 3.30 in the ¹H NMR spectrum, corresponding to the angular methine proton 12b-H.

As for tetracycle 19, compound 8 was methoxycarbonylated to give the carbamate 32, which was cyclized by means of NaH to yield the pentacyclic 17-azaeburnane compound 33. The closure of ring E was made evident by the loss of the signals corresponding to the indole NH proton and to the carbamate methoxy group in the NMR spectra. The angular protons 20-H and 21-H get deshielded ($\Delta\delta$ = + 0.68 and + 0.89, respectively), as a consequence of the increased rigidity of the molecule. Finally, compound 33 was methylated to yield the target structure 2. The complete spectral characterization of 17-azaeburna derivatives 33 and 2 is shown in table 3.

Reagents and conditions: (i) 1. NaH, THF, 0°C, 15 min. 2. ClCO₂CH₃, 0°C, 3h (quantitative); (ii) NaH, THF, 0°C, 3 h (quantitative); (iii) 1. NaH, THF, 0°C, 15 min. 2. CH₃I (0.1 equivalents), room temperature, 2 h (quantitative).

Scheme 7

ACKNOWLEDGEMENTS

Support for this research has been provided by the CIRIT (Generalitat de Catalunya) through grants QFN92-4303 and QFN95-4703. We also thank the CIRIT for a fellowship given to one of us (I.L.).

	¹ H NMR ^b	¹³ C NMR			
Compound	33	2	Compound	33	2
3-H _a	2.70 td (13,3)	2.79 td (13,3)	C-3	41.7	41.7
3-H _e	2.54 dt (13,3)	2.56 dt (13,3)	C-5	50.1	50.1
5-H _a	3.30 m	3.25-3.35 m	C-6	16.1	16.1
5-H _e	3.30 m	3.25-3.35 m	C-7	128.7	128.7
6-H _a	2.47 dm	2.47 dm	C-8	108.6	108.1
6-H _e	2.90 m	2.85-3.00 m	C-9	117.9	117.9
9-H	7.40 d (7)	7.40 d (7)	C-10	122.2	122.2
10-H	7.17 t (7)	7.10 t (7)	C-11	123.7	123.7
11-H	7.24 t (7)	7.15 t (7)	C-12	114.7	114.7
12-H	8.20 d (7)	8.20 d (7)	C-13	masked	135.0
14-H _a	1.70 td (13,3)	1.80 td (13,3)	C-14	30.0	30.0
14-H _e	1.98 dt (13,3)	2.02 dt (13,3)	C-15	97.1	97.1
20-Н	3.74 d (7)	3.69 d (7)	C-16	152.1	152.1
21-H	4.69 br d (7)	4.71 dt (7,2)	C-20	51.7	51.7
OCH ₂ CH ₃	0.41 t (7) 1.16 t (7)	0.38 t (7) 1.19 t (7)	C-21	58.7	58.5
OCH ₂ CH ₃	3.01, 3.19 (2m) 3.63, 3.71 (2m)	3.13 q (7) 3.52 q (7)	OCH2 <i>C</i> H3	14.3 15.9	14.3 15.9
17-N <i>H</i>	5.20 br s		OCH2CH3	56.7 58.6	55.7 58.6
17-NC <i>H</i> 3		3.26 (s)	17-NCH ₃		37.9

Table 3. NMR Data of compounds 33a and 2

EXPERIMENTAL

General. Melting points were determined in a capillary tube on a Büchi apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Varian Gemini-200 instrument (200 MHz) and 2D NMR COSY experiments were performed on a Varian XL-500 instrument (500 MHz). Unless otherwise noted, NMR spectra were registered in CDCl₃, and chemical shifts are expressed in parts per million (δ) relative to internal Me₄Si. IR spectra were recorded on a Nicolet FT-IR spectrophotometer. Mass spectra were determined on a Hewlett-Packard 5988A mass spectrometer. Flash column chromatography was carried out on SiO₂ (silica gel 60, 40-63 mm, SDS). TLC was performed on SiO₂ (silica gel 60 F254, Macherey-Nagel) and developed with the solvent described in each case for flash chromatography. The spots were located by UV light and Dragendorff or hexachloroplatinate reagent. Purification of reagents and solvents was effected according to standard methods. Prior to concentration under reduced pressure, all extracts were dried over

a. All signal assignments for compound 33 were confirmed by COSY (H,H) and (H,C) experiments.

b. Coupling constants are given in brackets (Hz).

anhydrous Na₂SO₄ powder. Microanalyses were performed on a Carlo Erba 1106 analyzer by the Departament de Química Orgànica and Biològica, CID, Barcelona.

1-(Benzyloxyethyl)-2-[1-(phenylsulfonyl)-2-indolyl]-4-piperidone Ethylene Acetal (10). Benzyl iodoethyl ether ¹³ (3.49 g, 13.33 mmol) was added dropwise to a mixture of piperidine 9^{12} (4.42 g, 11.11 mmol) and anhydrous K_2CO_3 (5 g) in dry acetone (100 ml). The resulting mixture was refluxed under N_2 for 48 h. The crude reaction mixture was filtered over Celite® and the filtrate was evaporated to give a residue which was flash chromatographed (Et₂O-hexane, 80:20) to give pure piperidine 10 (4.01 g, 70%): ¹H NMR 1.71 (dm, J =12 Hz, 1H, 5-H_a), 1.90-2.10 (m, 3H, 3-H and 5-H_e), 2.49 (td, J = 12 and 3 Hz, 1H, 6-H_a), 2.60-2.70 (m, 1H, NCH_A), 3.21 (ddd, J = 12, 5, and 3 Hz, 1H, 6-H_e), 3.30-3.40 (m, 1H, NCH_B), 3.60 (m, 1H, CH_AOBn), 3.75 (m, 1H, CH_BOBn), 3.87-4.10 (m, 4H, OCH₂), 4.28 (dd, J = 12 and 3 Hz, 1H, 2-H_a), 4.38 (s, 4H, OCH₂Ph), 6.77 (s, 1H, In-3H), 7.20-7.50 (m, 11 H, Ar-H), 7.79 (d, J = 7 Hz, 2H, Ar-H), 8.30 (d, J = 7 Hz, 1H, In-7H); ¹³C NMR 34.3 (C-5), 42.6 (C-3), 51.2 (NCH₂), 53.1 (C-6), 58.2 (C-2), 64.1 (OCH₂), 68.4 (CH₂OBn), 72.6 (OCH₂Ph), 106.4 (C-4), 109.5 (In-C3), 114.7 (In-C7), 120.6 (In-C4), 123.5 (In-C5), 124.2 (In-C6), 126.6, 127.2, 128.1, 129.0, and 133.6 (Ph-H); MS m/z (%) 533 (M+, 0.1), 411 (16), 285 (10), 128 (61), 91 (100). Anal. Calcd for C₃0H₃₂N₂O₅S: C, 67.65; H, 6.06; N, 5.30. Found: C, 67.85; H, 6.29; N, 5.29.

1-(Benzyloxyethyl)-2-[1-(phenylsulfonyl)-2-indolyl]-4-piperidone Propylenedithio Acetal (11). Method A: To solution of piperidine 10 (1.23 g, 2.31 mmol) in dry CH₂Cl₂ (10 ml), 1,3-propanedithiol (0.32 ml, 4.62 mmol) and BF3.Et2O (1.16 ml, 9.24 mmol) were added. The solution was stirred at 40 °C for 12 h. The reaction mixture was diluted with CH₂Cl₂ (25 ml), and washed with aqueous NaHCO₃. The organic extracts were dried and evaporated, and the residue was flash chromatographed to yield dithiane 11 and hydroxyethylpiperidine 12. Dithiane 11 (Et₂O-hexane, 60:40; 554 mg, 41%): ${}^{1}H$ NMR 1.71 (dt, J=12 and 6 Hz, 1H, NCH_A), 1.80-2.00 (m, 2H, 3-H_a and SCH₂CH₂), 2.00-2.15 (m, 3H, 5-H_a, 5-H_e, and SCH₂CH₂). $2.47 \text{ (dt, } J = 12 \text{ and } 6 \text{ Hz, NCH}_{B}), 2.60-2.80 \text{ (m, 3H, SCH}_{A}, SCH}_{A}, SCH}_{A}, and 6-H}_{a}), 2.95-3.05 \text{ (m, 3H, 6-H}_{e}, 3-H}_{e}, 3-H}_{e}$ and SCH_B), 3.10-3.40 (m, 3H, SCH_B', and CH₂OBn), 4.36 (br s, 3H, OCH₂Ph and 2-H_a), 6.80 (s, 1H, In-3H), 7.23-7.53 (m, 11H, Ar-H), 7.84 (d, J = 7 Hz, 2H, Ar-H), 8.30 (d, J = 7 Hz, 1H, In-7H); ¹³C NMR 25.5 (SCH₂), 25.9 (SCH₂CH₂), 26.2 (SCH₂'), 37.7 (C-5), 45.6 (C-3), 48.1 (C-4), 48.6 (C-6), 54.0 (NCH₂), 57.3 (C-2), 68.4 (CH₂OBn), 72.7 (OCH₂Ph), 109.7 (In-C₃), 114.7 (In-C₇), 120.7 (In-C₄), 123.6 (In-C₅), 124.2 (In-C6), 126.6, 127.3, 128.2, 129.3, and 133.9 (Ph), 137.1 (In-C7a), 138.3 (In-C2), 139.4, 143.4. Anal. Calcd for C₃₁H₃₄N₂O₃S: C, 64.33; H, 5.92; N, 4.84; S, 16.62. Found: C, 64.20; H, 6.19; N, 4.42; S, 16.54. **Aminoalcohol 12** (Et₂O-MeOH, 98:2; 460 mg, 40%): IR 3500-3350 (OH) cm⁻¹; ¹H NMR 1.60 (br d, J = 12Hz, 1H, NCH_A), 1.95-2.20 (m, 4H, 5-H, 3-H_a, and SCH₂C H_A), 2.45-2.55 (m, 1H, NCH_B), 2.58-2.80 (m, 3H, $3-H_e$, SCH_e, and SCH₂CH_B), 2.90-3.05 (m, 4H, 6-H_a, CH₂OH, and SCH_e'), 3.15 (td, J=12 and 6 Hz, 1H, SCH_a), 3.20-3.30 (dm, J = 12 Hz, 1H, 6-H_e), 3.55 (td, J = 12 and 6 Hz, 1H, SCH_a), 4.55 (br d, J = 12 Hz, 1H, 2-H_a), 6.75 (br s, 1H, In-3H), 7.20-7.60 (m, 6H, Ar-H), 7.85 (d, J = 7 Hz, 1H, Ar-H), 8.32 (d, J = 7 Hz, 1H, In-7H).

Method B: A dispersion of NaH (60% in oil, 69 mg, 1.7 mmol) was washed twice with dry Et₂O and once with dry THF under inert atmosphere, and cooled at 0°C before addition of a solution of aminoalcohol 12 (700 mg, 1.4 mmol) in dry THF (25 ml). Benzyl bromide (0.2 ml, 1.7 mmol) was added immediately, and the reaction mixture was stirred at room temperature overnight. The crude was poured on iced H₂O, and

extracted once with Et₂O and then with CH₂Cl₂. The organic extracts, dried and evaporated yielded compound 11 (665 mg, 82%).

1-(2-Benzyloxyethyl)-2-[1-(phenylsulfonyl)-2-indolyl]-4-piperidone (3). Method A: A solution of ethylene acetal 10 (500 mg, 0.94 mmol) in 4N HCl-MeOH (1:1, 50 ml) was refluxed for 12 h. The reaction mixture was poured on iced H₂O, basified with Na₂CO₃ and extracted with CH₂Cl₂. The dried organic extracts were evaporated and flash chromatographed (Et₂O-hexane, 60:40) to give piperidone 3 (oil, 87 mg, 19% yield). Method B: To a solution of dithiane 11 (1.45 g, 2.51 mmol) in MeCN-H₂O 9:1 (100 ml), (CF₃COO)₂IC₆H₅ (1.51 g, 3.512 mmol) was added, and the resulting mixture was stirred at room temperature for 2 h. The solvent was evaporated and the residue, dissolved in CH₂Cl₂, was washed with saturated aqueous Na₂CO₃. The organic extracts, dried and evaporated, were flash chromatographed (Et₂O-hexane, 60:40) to give piperidone 3 (oil, 1.17 g, 96%): IR (NaCl) 1703 (CO) cm⁻¹; ¹H NMR 2.49 (td, J = 11 and 4 Hz, 1H, 6-H_a), 2.51 (td, J = 11 and 4 Hz, 1H, 5-Ha), 2.60 (ddd, J = 11, 4 and 1 Hz, 1H, 3-He), 2.70-2.80 (m, 1H, 3-Ha), 2.78 (ddd, J = 11, 4 and 1 Hz, 1H, 5-He), 2.82 (dd, J = 11 and 4 Hz, 1H, 6-He), 2.90 and 3.10 (2 m, 1H each, 1H each)NCH₂), 3.40 and 3.50 (2 m, 1H each, CH₂OBn), 4.40 (s, 2H, OCH₂Ph), 5.00 (t, J = 3 Hz, 1H, 2-H_e), 6.63 (s, 1H, In-3H), 7.20-7.50 (m, 11H, Ar-H), 7.79 (d, J = 7 Hz, 2H, Ar-H), 8.12 (d, J = 7 Hz, 1H, In-7H); ¹³C NMR 38.8 (C-5), 44.4 (C-3), 47.6 (C-6), 51.5 (NCH₂), 58.5 (C-2), 68.9 (CH₂OBn), 72.9 (OCH₂Ph), 111.2 (In-C3), 114.9 (In-C7), 120.9 (In-C4), 123.7 (In-C5), 124.9 (In-C6), 126.2, 127.5, 128.3, 129.0, and 133.6 (Ar), 137.3 (In-C7a), 138.1 (In-C2), 139.4 (Ph-ipso), 141.2 (Ph'-ipso), 208.5 (C-4); MS (m/z, %): 488 (M⁺, 1), 353 (5), 303 (13), 196 (17), 165 (16), 143 (17), 91 (100). Anal. Calcd for C₂₈H₂₈N₂O₄: C, 68.83; H, 5.78; N, 5.73; S, 6.56. Found: C, 68.49; H, 5.89; N, 5.39; S, 6.70.

1-(2-Benzyloxyethyl)-2-[1-(phenylsulfonyl)-2-indolyl]-4-piperidone Oximes (Z-13 and E-14). To a mixture of NH₂OH.HCl (231 mg, 3.33 mmol) and K₂CO₃ (460 mg, 3.33 mmol) in dry DME (25 ml), a solution of piperidone 3 (812 mg, 1.66 mmol) in dry DME (50 ml) was added under N₂ atmosphere. The reaction mixture was stirred at 80°C for 1 h 30 min. The solvent was evaporated, and the residue, dissolved in aqueous K2CO3, was extracted with CH2Cl2. The organic extracts were washed with H2O, dried, and evaporated to yield an oil which was flash chromatographed (CH₂Cl₂-MeOH, 99:1) to isolate oximes (Z)-13 and (E)-14. Oxime Z-13 (lower Rf, 260 mg, 31%): IR (NaCl) 3350-3250 (OH) cm⁻¹; ¹H NMR 2.30-2.48 (m, 2H, 3-H_a and 5-H_a), 2.55-2.63 (m, 3H, 3-H_e, 5-H_e, and 6-H_a), 2.70-2.80 (m, 1H, NCH_A), 3.15-3.20 (m, 2H, 6-H_e and NCH_B), 3.30-3.40 and 3.42-3.53 (2 m, 1H each, CH₂OB_n), 4.40 (s, 2H, OCH₂Ph), 4.60 (t, J =3 Hz, $2 \cdot \text{He}$), 6.80 (s, 1H, In-3H), $7.20 \cdot 7.50 \text{ (m, 11H, Ar-H)}$, 7.75 (d, J = 7 Hz, 2H, Ar-H), 8.22 (d, J = 7 Hz, 2H, Ar-H)1H, In-7H); ¹³C NMR 29.1 and 29.2 (C-3 and C-5), 49.6 (C-6), 52.2 (NCH₂), 57.5 (C-2), 68.8 (CH₂OBn), 72.9 (OCH₂Ph), 110.6 (In-C3), 115.1 (In-C7), 120.9 (In-C4), 123.8 (In-C5), 124.7 (In-C6), 126.3, 127.5, 128.3, and 129.0 (Ph), 129.2 (In-C3a), 133.6 (Ph), 137.3 (In-C7a), 138.5 (In-C2), 139.4 and 142.0 (Ph-ipso), 156.8 (C-4); MS m/z (%) 504 (M⁺, 1), 382 (M⁺ - OCH₂Ph, 58), 256 (33), 223 (32), 195 (59), 91 (100), 77 (43). Anal. Calcd for C₂₈H₂₉N₃O₄S.1H₂O: C, 64.47; H, 5.80; N, 8.06; S, 6.15. Found: C, 64.85; H, 5.66; N, 7.69; S, 5.85. Oxime E-14 (higher Rf, 338 mg, 40%): ¹H NMR 2.38-2.50 (m, 3H, 3-H_a, 5-H_a, and 5-H_e), 2.55-2.72 (m, 3H, $3-H_e$, $5-H_a$, and NCH_A), 2.70 (dt, J = 12 and 3 Hz, 1H, $6-H_e$), 3.07-3.17 (m, 1H, NCH_B), 3.30-3.40 and 3.40-3.50 (2 m, 1H each, CH₂OBn), 4.40 (s, 2H, OCH₂Ph), 4.58 (t, 1H, J = 3 Hz, 2-H_e), 6.80 (s, 1H, In-3H), 7.20-7.50 (m, 11H, Ar-H), 7.75 (d, J = 7 Hz, 2H, Ar-H), 8.22 (d, J = 7 Hz, 1H, In-7H), 8.31

(br s, 1H, NO*H*); ¹³C NMR 23.6 (C-5), 36.7 (C-3), 48.8 (C-6), 52.7 (NCH₂), 58.5 (C-2), 68.7 (CH₂OBn), 72.9 (O*C*H₂Ph), 110.9 (In-C3), 115.1 (In-C7), 120.9 (In-C4), 123.7 (In-C5), 124.6 (In-C6), 126.3, 127.5, 128.3, and 129.2 (Ph), 129.3 (In-C3a), 133.8 (Ph), 137.3 (In-C7a), 138.2 (In-C2), 139.3 and 142.3 (Ph-*ipso*), 156.7 (C-4).

5-Amino-1-(2-benzyloxyethyl)-4,4-diethoxy-2-[1-(phenylsulfonyl)-2-indolyl]piperidines (*cis-* and *trans***-15**). To a mixture of oxime (*Z*)-13 (160 mg, 0.32 mmol) and K_2CO_3 (88 mg, 0.64 mmol) in dry THF (3 ml), TsCl (61 mg, 0.32 mmol) was added, and the resulting mixture was stirred for 72 h at room temperature, under inert atmosphere. The crude was filtered through Celite[®] and the filtrate was evaporated to yield the corresponding (*Z*)-tosyloxime (209 mg), which was used without further purification. (*Z*)-Tosyloxime: 1 H NMR 2.45 (s, 3H, CH₃), 4.38 (s, 2H, OCH₂Ph), 4.65 (t, J = 3 Hz, 1H, 2-H_e), 6.61 (s, 1H, In-3H), 7.20-7.60 (m, 11H, Ar-H), 7.45 (d, J = 7 Hz, 2H, Tos-o), 7.75 (d, J = 7 Hz, 2H, Ar-H), 7. 88 (d, J = 7 Hz, 2H, Tos-m), 8.20 (d, J = 7 Hz, 1H, In-7H); 13 C NMR 21.6 (CH₃), 28.9 (C-5), 31.2 (C-3), 49.2 (C-6), 51.8 (NCH₂), 56.9 (C-2), 68.6 (CH₂OBn), 72.8 (OCH₂Ph), 110.5 (In-C3), 115.1 (In-C7), 121.0 (In-C4), 123.8 (In-C5), 125.0 (In-C6), 126.0, 126.2, 126.3, 127.4, 127.5, 128.2, 128.7, 128.9, 129.1, 129.3, 129.5, 129.6, and 134.0 (Ph), 166.1 (C-4).

To potassium metal (40 mg, 1.03 matg) at 0°C and under inert atmosphere, dry EtOH (10 ml) was slowly added, and the mixture was stirred at 0°C until complete dissolution of the metal. Anhydrous MgSO₄ (350 mg) and a solution of the previously obtained (*Z*)-tosyloxime (340 mg, 0.52 mmol) in dry EtOH (10 ml) were added at 0°C. The mixture was allowed to reach room temperature, and was stirred for 1 h. The crude was filtered through Celite®, and the filtrate was evaporated to give an oil which was flash chromatographed (CH₂Cl₂-MeOH, 99:1) to isolate *cis*- and *trans*-15. 5-Aminopiperidine *cis*-15 (Higher Rf, 120 mg, 40%): IR (NaCl) 3370 and 3280 (NH₂) cm⁻¹; ¹³C NMR 15.3 and 15.5 (CH₃), 37.7 (C-3), 50.1 (C-5), 53.2 (NCH₂), 54.9 (C-6), 55.1 and 55.6 (OCH₂CH₃), 57.4 (C-2), 68.5 (CH₂OBn), 72.8 (OCH₂Ph), 100.5 (C-4), 109.9 (In-C3), 114.9 (In-C7), 120.8 (In-C4), 123.6 (In-C5), 124.3 (In-C6), 126.4, 127.3, 128.3, and 129.2 (Ph), 129.3 (In-C3a), 133.8 (Ph), 137.3 (In-C7a), 143.8 (Ar-*ipso*); MS *m/z* (%) 577 (M⁺, 0.1), 532 (M⁺ - OEt, 2), 486 (3), 419 (16), 410 (100), 381 (39), 328 (45), 282 (34), 91 (47). Anal. Calcd for C₃₂H₃₉N₃O₅S: C, 66.53; H, 6.80; N, 7.27. Found; C, 66.70; H, 6.63; N, 7.39. 5-Aminopiperidine *trans*-15 (Lower Rf, 33 mg, 11%): ¹³C NMR 15.6 and 15.7 (CH₃), 39.0 (C-3), 53.5 (NCH₂), 53.6 (C-5), 56.1 and 57.8 (OCH₂CH₃), 57.1 (C-6), 57.3 (C-2), 68.3 (CH₂OBn), 72.8 (OCH₂Ph), 98.4 (C-4), 110.2 (In-C3), 115.0 (In-C7), 120.6 (In-C4), 123.7 (In-C5), 124.3 (In-C6), 126.4, 127.4, 128.2, 129.1, and 133.8 (Ph).

3-Amino-1-(2-benzyloxyethyl)-4,4-diethoxy-2-[(1-phenylsulfonyl)-2-indolyl]piperidines (*cis*-16 and *trans*-16). Operating as above, from oxime *E*-14 (200 mg, 0.40 mmol), K_2CO_3 (110 mg, 0.80 mmol), and TsCl (76 mg, 0.40 mmol) in dry THF (4 ml), the corresponding (*E*)-tosyloxime (261 mg) was obtained, which was used without further purification. (*E*)-Tosyloxime: 1H NMR 2.47 (s, 3H, CH₃), 4.37 (s, 2H, OCH₂Ph), 4.65 (t, J = 3 Hz, 1H, 2-H_e), 6.63 (s, 1H, In-3H), 7.15-7.55 (m, 11H, Ar-H), 7.40 (d, J = 7 Hz, 2H, Tos-o), 7.70 (d, J = 7 Hz, 2H, Ar-H), 7.90 (d, J = 7 Hz, 2H, Tos-m), 8.15 (d, J = 7 Hz, 1H, In-7H); ^{13}C NMR 21.5 (CH₃), 25.0 (C-5), 34.7 (C-3), 47.0 (C-6), 51.9 (NCH₂), 57.5 (C-2), 68.5 (CH₂OBn), 72.7 (OCH₂Ph), 110.9 (In-C3), 114.8 (In-C7), 120.8 (In-C4), 123,5 (In-C5), 124.8 (In-C6), 126.0, 127.3, 127.3, 128.1, 128.5, 128.7, 128.9, 129.1, 129.4, and 133.6 (Ph), 166.3 (C-4). Operating as for the preparation of aminopiperidines

15, from potassium (43 mg, 1.93 matg), anhydrous MgSO₄ (350 mg), and the previously prepared (*E*)-tosyloxime (359 mg, 0.55 mmol) in dry EtOH (10 ml), oxime *cis*-16 (184 mg, 58%) was obtained, after flash chromatography (CH₂Cl₂-MeOH, 99:1). 3-Aminopiperidine *cis*-16: IR (NaCl) 3380 and 3300 (NH₂) cm⁻¹; ¹³C NMR 15.2 and 15.5 (CH₃), 27.3 (C-5), 50.6 (C-6), 53.0 (C-3), 54.0 and 55.3 (OCH₂CH₃), 54.8 (NCH₂), 60.8 (C-2), 68.8 (CH₂OBn), 72.7 (OCH₂Ph), 100.3 (C-4), 112.7 (In-C3), 115.1 (In-C7), 120.8 (In-C4), 123.6 (In-C5), 124.4 (In-C6), 126.7, 127.4, 128.3, 129.1, and 133.7 (Ph); MS *m/z* (%): 577 (M⁺, 1), 532 (2), 437 (24), 436 (76), 410 (34), 291 (19), 279 (35), 130 (48), 91 (100). Anal. Calcd for C₃₂H₃₉N₃O₅S: C, 66.53; H, 6.80; N, 7.27. Found; C, 66.82; H, 6.56; N, 7.25.

Only once 3-aminopiperidine trans-16 was detected: ¹H NMR (from 9 mg of a 1:1 mixture of cis and trans isomers) 1.00 and 1.28 (2 t, J = 7 Hz, 3H each, CH₃), 1.75-1.95 (m, 5-H_a and NCH_A), 2.00 (dt, J = 11 Hz, 1H, 5-H_e), 2.50 (t, J = 11 Hz, 1H, 6-H_a), 2.51-2.70 (m, NCH_B), 3.05 (d, J = 11 Hz, 1H, 3-H_a), 3.15 (dt, J = 11 and 4 Hz, 6-H_e), 3.30-3.65 (m, CH₂OBn and OCH₂CH₃), 4.30 (d, J = 11 Hz, 1H, 2-H_a), 4.33 (s, 2H, OCH₂Ph), 6.72 (s, 1H, In-3H), 7.20-7.50 (m, Ar-H), 7.81 (d, J = 7 Hz, 2H, Ar-H), 8.28 (d, J = 7 Hz, 1H, In-7H).

3-Amino-1-(2-benzyloxyethyl)-4,4-diethoxy-2-(2-indolyl)piperidine (17). A solution of amine 16 (170 mg, 0.29 mmol) in 10% aqueous NaOH (7 ml) and EtOH (15 ml) was refluxed for 5 h. The solvent was evaporated, and the aqueous residue was extracted with CH₂Cl₂. The organic extracts were washed with H₂O, dried, and evaporated to give an oil which was flash chromatographed (CH₂Cl₂-MeOH, 99:1) to yield amine 17 (50 mg, 39%): IR (NaCl) 3400-3200 (In-NH and NH₂) cm⁻¹; ¹H NMR 1.15 and 1.25 (2 t, J = 7 Hz, 3H each, CH₃), 1.70-1.80 (br s, 2H, NH₂), 1.84 (br d, J = 13 Hz, 1H, 5-H_c), 1.97 (td, J = 13 and 4 Hz, 1H, 5- H_a), 2.15-2.20 (m, 1H, NCH_A), 2.35 (td, J = 13 and 4 Hz, 1H, 6- H_a), 2.74-2.84 (m, 1H, NCH_B), 3.00 (br d, J= 13 Hz, 1H, 6-H_e), 3.05 (d, J = 1 Hz, 1H, 3-H_e), 3.30-3.60 (m, 6H, OCH₂CH₃ and CH₂OBn), 3.90 (d, J =1Hz, 1H, 2-H_a), 4.45 (s, 2H, OCH₂Ph), 6.35 (s, 1H, In-3H), 7.05 (t, J = 7 Hz, 1H, In-5H), 7.10 (t, J = 7 Hz, 1H, In-6H), 7.20-7.45 (m, 6H, In-7H and Ar-H), 7.50 (d, J = 7 Hz, 1H, In-4H), 10.15 (br s, 1H, In-NH); ¹³C NMR 15.3 and 15.5 (CH₃), 28.1 (C-5), 50.1 (C-6), 53.7 and 54.8 (OCH₂CH₃), 55.3 (NCH₂), 55.8 (C-3), 61.3 (C-2), 68.5 (CH₂OBn), 73.0 (OCH₂Ph), 100.2 (C-4), 101.8 (In-C3), 111.2 (In-C7), 119.2 (In-C4), 119.9 (In-C5), 121.1 (In-C6), 127.6 (Ph-p), 127.9 (Ph-o), 128.2 (Ph-m), 135.9 (In-C7a), 138.0 (In-C2), 138.8 (Ph-ipso); MS m/z (%) 437 (M⁺, 4), 392 (12), 346 (42), 329 (33), 280 (39), 270 (85), 271 (40), 214 (28), 158 (28), 158 (78), 130 (85), 91 (100). Anal. Calcd for C₂₆H₃₅N₃O₃: C, 71.37; H, 8.06; N, 9.60. Found: C, 71.59; H, 8.43; N, 9.52.

3-Amino-1-(2-benzyloxyethyl)-4,4-diethoxy-2-(2-indolyl)piperidine Methyl Carbamate (18). A suspension of NaH (60% in oil, 4 mg, 0.11 mmol) was washed twice with dry hexane, and once with dry THF under inert atmosphere, and cooled at 0°C before addition of a solution of amine 17 (40 mg, 0.09 mmol) in dry THF (10 ml). After 15 min, methyl chloroformate (10 μ l, 0.11 mmol) was added, and the reaction was stirred at 0°C for 3 h. The crude was poured on iced H₂O, the solvent was evaporated, and the aqueous residue was extracted with CH₂Cl₂. The organic extracts, dried and evaporated, yielded carbamate 18 (44 mg, quantitative), which was used without further purification. IR (NaCl) 3350 and 3160 (NH), 1728 (CO) cm⁻¹; ¹H NMR 1.15 and 1.20 (2 t, J = 7 Hz, 3H each, CH₃), 1.75 (td, J = 11 and 3 Hz, 1H, 5-H_a), 2.00 (m, 1H, NCH_B), 2.15 (br d, J = 11 Hz, 1H, 5-H_c), 2.35 (td, J = 11 and 2 Hz, 1H, 6-H_a), 2.80 (m, 1H, NCH_B),

2.95 (br d, J = 11 Hz, 1H, 6-H_e), 3.10 (s, 1H, 3-H_e), 3.30* and 3.35 (2s, OCH₃), 3.40-3.63 (m, 6H, OCH₂CH₃ and CH₂OBn), 4.00 (d, $J_{AB} = 3$ Hz, 1H, OCH_APh), 4.12 (s, 1H, 2-H_a), 4.50 (d, $J_{AB} = 3$ Hz, 1H, OCH_BPh), 5.35* and 5.49 (2 d, J = 10 Hz, OCONH), 6.40 and 6.65* (2s, In-3H), 6.75* and 7.00 (2m, In-5H), 7.20-7.50 (m, 8H, Ar-H), 8.95* and 9.00 (2 br s, In-NH); ¹³C NMR 15.2 and 15.3 (OCH₂CH₃), 28.7 (C-5), 49.4 (C-6), 51.9 (OCH₃), 53.5 (NCH₂), 55.3 and 55.8 (OCH₂CH₃), 56.4 (C-3), 61.7 (C-2), 68.4 (CH₂OBn), 73.4 (OCH₂Ph), 98.7 (C-4), 101.6 (In-C3), 110.6 (In-C7), 119.1 (In-C4), 120.2 (In-C5), 121.0 (In-C6), 127.9 (In-C3a), 128.0 (Ph-o), 128.3 (Ph-o), 128.6 (Ph-o), 136.1 (In-C7a), 137.2 (Ph-o), 138.0 (In-C2), 156.3 (CO).

12-(2-Benzyloxyethyl)-9,9-diethoxy-7-oxo-7,8,8a,9,10,11,12,12a-octahydropyrido[2',3':5,6]pyrimidino-[3,4-a]indole (19). A solution of carbamate 18 (45 mg, 0.09 mmol) in dry THF (8 ml) was slowly added, under inert atmosphere and at 0°C, on previously washed NaH (see above, 4 mg, 0.11 mmol). The reaction mixture was stirred for 3 h. The crude was poured on iced H₂O, the solvent was evaporated, and the aqueous residue was extracted with CH₂Cl₂. The organic extracts, dried and evaporated, gave an oil which was flash chromatographed (Et₂O) to yield tetracycle 19 (37 mg, 99%). IR (NaCl) 3200 (NH), 1700 (CO) cm⁻¹; ¹H 1.20 and 1.25 (2 t, J = 7 Hz, 3H each, CH₃), 1.92-2.04 (m, 2H, NCH_A and 10-H_a), 2.47-2.60 (m, 2H, 10-H_e and 11-H_e), 2.87-2.98 (m, 2H, NCH_B and 11-H_a), 3.24-3.34 (m, 1H, OCH₂CH₃), 3.40-3.55 (m, 5H, OCH₂CH₃) and CH₂OBn), 3.73 (br s, 1H, 8a-H), 3.82 (br s, 1H, 12a-H), 4.35 (s, 2H, OCH₂Ph), 5.40 (s, 1H, NH), 6.50 (s, 1H, 1-H), 7.20-7.30 (m, 7H, Ar-H), 7.50 (d, J = 7 Hz, 1H, 2-H), 8.35 (d, J = 7 Hz, 1H, 5-H); ¹³C NMR 15.1 and 15.2 (CH₃), 28.9 (C-10), 48.3 (C-11), 52.0 (NCH₂), 54.1 (C-12a), 54.4 (C-8a), 55.4 and 55.6 (OCH₂CH₃), 68.2 (CH₂OBn), 73.0 (OCH₂Ph), 98.0 (C-9), 107.4 (C-1), 115.2 (C-5), 120.4 (C-2), 122.6 (C-3), 124.3 (C-4), 127.5 (Ph-o), 127.6 (Ph-p), 128.3 (Ph-m), 134.2, 135.5, 138.2, 150.7 (C-7); MS m/z (%) 463 (M+, 1), 342 (12), 296 (6), 255 (10), 184 (27), 158 (88), 130 (78), 117 (37), 91 (29), 84 (100). Anal. Calcd for C₂₇H₃₃N₃O₄: C, 69.96; H, 7.18; N, 9.06. Found: C, 70.02, H, 7.09; N, 9.23.

12-(2-Benzyloxyethyl)-9,9-diethoxy-8-metil-7-oxo-7,8,8a,9,10,11,12,12a-octahydropyrido[2',3':5,6]pirimidino[3,4-a]indole (20). A solution of tetracycle 19 (43 mg, 0.09 mmol) in dry THF (3 ml) was slowly added, under inert atmosphere and at 0°C, on previously washed NaH (see above, 5 mg, 0.11 mmol). The reaction mixture was stirred for 15 min. CH₃I (7 μ l, 0.11 ml) was added, the reaction mixture was allowed to reach room temperature, and stirred for 2 h. The crude was poured on iced H₂O, the solvent was evaporated, and the aqueous residue was extracted with CH₂Cl₂. The organic extracts, dried and evaporated, gave an oil which was flash chromatographed (Et₂O) to yield tetracycle 20 (44 mg, 99%). IR (NaCl) 1691 (CO) cm⁻¹; ¹H NMR 0.95 and 1.15 (2 t, J = 7 Hz, 3H each, CH₃), 1.80-1.90 (m, 2H, 10-H_a and NCH_A), 2.75 (dt, J = 11 and 4 Hz, 1H, 11-H_e), 3.10-3.30 (m, 4H, 11-H_a, NCH_B, and CH₂OBn), 3.25 (s, 3H, NCH₃), 3.40 (q, J = 7 Hz, 2H, OCH₂CH₃), 3.65 (m, 3H, 12a-H and OCH₂CH₃), 4.55 (s, 2H, OCH₂Ph), 4.60 (br s, 1H, 8a-H), 6.40 (s, 1H, 1-H), 7.10 (t, J = 7 Hz, 1H, 3-H), 7.15 (t, J = 7 Hz, 1H, 4-H), 7.20-7.40 (m, 5H, Ph-H), 7.45 (d, J = 7 Hz, 1H, 2-H), 8.33 (d, J = 7 Hz, 1H, 5-H); ¹³C NMR 14.6 and 15.4 (CH₃), 29.6 (C-10), 38.0 (br s, NCH₃), 44.0 (br s, C-11), 53.8 (NCH₂), 56.1 (C-12a), 57.0 (C-8a), 57.3 and 62.0 (br s, OCH₂CH₃), 69.8 (CH₂OBn), 73.2 (OCH₂Ph), 99.0 (C-9), 105.0 (br s, C-1), 114.8 (C-5), 119.6 (C-2), 121.8 (C-3), 123.1 (C-4), 127.6 (Ph-o), 127.7 (Ph-p), 128.4 (Ph-m), 135.6, 138.1, 151.4 (C-7); MS m/z (%) 477 (M+, 1), 402 (1), 310 (1), 199

^{*} Two carbamate rotamers are observed in a 1:4 proportion. The asterisk indicates signals corresponding to the minor rotamer.

(52), 198 (22), 117 (30), 91 (21), 84 (33). Anal. Calcd for $C_{28}H_{35}N_3O_4$: C, 70.41; H, 7.39; N, 8.80. Found: C, 70.34; H, 7.25; N, 8.50.

Debenzylation of compound 20 with Me₂S/BF₃.Et₂O (21 and 22). To a solution of tetracycle 20 (50 mg, 0.10 mmol) in dry CH₂Cl₂ (5 ml), freshly distilled BF₃.Et₂O (0.16 ml, 1.13 mmol), and Me₂S (0.14 ml, 3.14 mmol) were added consequently. The reaction mixture was heated at 30°C for 18 h, poured on diluted NH₄OH (pH>7), and the layers separated. The aqueous phase was extracted with CH₂Cl₂, and the combined organic extracts, dried and evaporated, yielded an oil which was flash chromatographed (CH₂Cl₂-MeOH, 97:3) to isolate compounds 21 and 22. Ketone 21 (lower Rf, 5 mg, 18%): IR (NaCl) 3500-3300 (OH), 1723 (NCON), 1693 (CO) cm⁻¹; 1 H NMR 2.23 (dt, J = 13 and 2 Hz, 1H, 10-H_e), 2.63 (td, J = 13 and 7 Hz, 1H, 10-H_e) H_a), 3.12 (s, 3H, NCH₃), 3.15 (dt, J = 13 and 2 Hz, 1H, 11- H_e), 3.20 (t, J = 5 Hz, 2H, NCH₂), 3.42 (td, J = 13and 2 Hz, 1H, 11-H_a), 3.75 (t, J = 5 Hz, 2H, CH_2OH), 4.12 (d, J = 6 Hz, 1H, 8a-H), 4.91 (d, J = 6 Hz, 1H, 12a-H), 6.40 (s, 1H, 1-H), 7.15 (t, J = 7 Hz, 1H, 3-H), 7.20 (t, J = 7 Hz, 1H, 4-H), 7.40 (d, J = 7 Hz, 1H, 2-H), 8.30 (d, J = 7 Hz, 1H, 5-H); ¹³C NMR 36.0 (NCH₃), 38.9 (C-10), 47.1 (C-11), 55.8 (NCH₂), 59.8 (CH₂OH), 61.1 (C-12a), 66.2 (C-8a), 103.8 (C-1), 115.8 (C-5), 120.0 (C-2), 122.8 (C-3), 124.6 (C-4), 128.7(C-12b), 132.4 (C-5a), 135.8 (C-1a), 150.8 (C-3), 203.0 (C-9); MS m/z (%) 313 (M+, 25), 283 (15), 282 (28), 253 (16), 211 (100), 198 (79), 155 (20), 129 (11), 84 (57). Anal. Calcd for C₁₇H₁₉N₃O₃: C, 65.17; H, 6.07; N, 13.41. Found: C, 65.43; H, 5.89; N, 13.21. Enol ether 22 (higher Rf, 10 mg, 28%): IR (NaCl) 3500-3300 (OH), 1688 (CO and C=C) cm⁻¹; ¹H NMR 1.26 (t, J = 7 Hz, 3H, CH₃), 3.17 (m, 2H, NCH₂), 3.25 (dd, J = 5 and 1 Hz, 1H, 11-H), 3.30 (s, 3H, NCH₃), 3.56-3.70 (2 m, 4H, CH₂OH, OCH₂CH₃, and 11-H), 4.25 (br s, 1H, 8a-H), 4.45 (br s, 1H, 12a-H), 4.58 (br d, J = 5 Hz, 1H, 10-H), 6.51 (s, 1H, 1-H), 7.20 (t, J = 7 Hz, 1H, 3-H), 7.30 (t, J = 7 Hz, 1H, 4-H), 7.50 (d, J = 7 Hz, 1H, 2-H), 8.35 (d, J = 7 Hz, 1H, 5-H); ¹³C NMR 14.4 (CH₃), 38.0 (NCH₃), 44.7 (C-11), 55.9 (C-8a), 56.7 (OCH₂CH₃), 57.1 (C-12a), 58.7 (NCH₂), 62.6 (CH₂OH), 93.8 (C-10), 103.7 (C-1), 115.5 (C-5), 120.0 (C-2), 122.5 (C-3), 123.9 (C-4); MS m/z (%) 341 (M⁺, 41), 313 (55), 312 (100), 282 (21), 281 (35), 253 (29), 252 (32), 251 (12), 200 (21), 199 (39), 155 (8), 112 (18). Anal. Calcd for C₁₉H₂₃N₃O₃: C, 73.88; H, 6.79; N, 12.30. Found: C, 73.60; H, 6.58; N, 12.29.

5-Amino-4,4-diethoxy-1-(2-hydroxyehyl)-2-[1-(phenylsulfonyl)-2-indolyl]piperidine (23). Operating as for the preparation of compounds **21** and **22**, from amine *cis*-**15** (95 mg, 0.16 mmol), BF₃.Et₂O (0.24 ml, 1.97 mmol), and Me₂S (0.21 ml, 4.93 mmol), in dry CH₂Cl₂ (5 ml), aminoalcohol **23** (32 mg, 40%) was obtained, after flash chromatography (CH₂Cl₂-MeOH, 95:5). IR (NaCl) 3500-3100 (OH and NH₂) cm⁻¹; ¹H NMR 1.15 and 1.25 (2 t, J = 7 Hz, 3H each, CH₃), 1.82 (br t, J = 12 Hz, 1H, 3-H_a), 2.02 (br d, J = 12 Hz, 1H, 3-H_e), 2.50-2.60 (m, 1H, NCH_A), 2.55 (d, J = 12 Hz, 1H, 6-H_a), 2.80-2.90 (br s, 2H, NH₂), 3.08 (s, 1H, 5-H_e), 3.12 (d, J = 12 Hz, 1H, 6-H_e), 3.25 (m, 1H, NCH_B), 3.40-3.70 (m, 2H, CH₂OH), 3.60-3.80 (m, 4H, OCH₂CH₃), 4.26 (dd, J = 12 and 3 Hz, 1H, 2-H_a), 6.85 (s, 1H, In-3H), 7.25 (t, J = 7 Hz, 1H, In-5H), 7.30 (t, J = 7 Hz, 1H, In-6H), 7.40 (m, 4H, Ar-H), 7.77 (d, J = 7 Hz, 2H, Ar-H), 8.29 (d, J = 7 Hz, 1H, In-4H); ¹³C NMR 15.2 and 15.4 (CH₃), 37.7 (C-3), 49.9 (C-6), 53.8 (NCH₂), 54.8 (C-5), 55.0 and 55.5 (OCH₂CH₃), 56.9 (C-2), 58.7 (CH₂OH), 99.2 (C-4), 110.3 (In-C3), 114.9 (In-C7), 120.9 (In-C4), 123.7 (In-C5), 124.5 (In-C6), 126.4 (Ph-o), 129.2 (Ph-m), 129.4 (In-C3a), 133.8 (Ph-p), 136.9 (In-C7a), 139.4 (Ar-*ipso*), 142.9 (In-C2); MS m/z (%) 487 (M⁺, 1), 456 (5), 410 (100), 381 (40), 328 (67), 282 (51), 215 (70), 130 (68), 102 (53), 77 (97). Anal. Calcd for C₂5H₃3N₃O₅S: C, 61.58; H, 6.82; N, 8.62. Found: C, 61.59; H, 6.90; N, 8.60.

Cyclisation of alcohol 23 with K'BuO (24 and 25). To a solution of aminoalcohol 23 (32 mg, 0.07 mmol) in dry THF (3 ml), cooled at 0°C and under inert atmosphere, recently sublimated K'BuO (19 mg, 0.17 mmol) was added. After stirring at 0°C for 30 min, the crude reaction mixture was poured on aqueous NH₄Cl and extracted with Et₂O. The organic extracts, dried and evaporated, yielded an oil which was flash chromatographed (CH₂Cl₂-MeOH, 95:5) to isolate compounds 24 and 25. 3-Aminoindoloquinolizidine 24 (lower Rf, 5 mg, 23%): IR (NaCl) 3200 (In-NH and NH₂), 2800-2750 (Bohlman) cm⁻¹; ¹H NMR 1.20 and 1.22 (2 t, J = 7 Hz, 3H each, CH₃), 1.30 (br s, 2H, NH₂), 1.80 (t, J = 12 Hz, 1H, 1-H_a), 2.21 (br d, J = 12 Hz, 1H, 1-H_e), 2.64 (br dd, J = 14 and 4 Hz, 1H, 7-H_e), 2.72 (br t, J = 14 Hz, 1H, 7-H_a), 2.82 (dd, J = 12 and 2 Hz, 1H, 4-H_a), 2.93 (dd, J = 12 and 2 Hz, 1H, 4-H_e), 2.93-3.02 (m, 2H, 6-H_a and 6-H_e), 3.07 (t, J = 2 Hz, 1H, $3-H_e$), 3.45 (br d, J = 12 Hz, 1H, 12b-H), 3.50-3.65 (m, 4H, OCH₂CH₃), 7.05 (t, J = 7 Hz, 1H, 9-H), 7.10 (t, J = 7 Hz, 1H, 10-H), 7.25 (d, J = 7 Hz, 1H, 11-H), 7.45 (d, J = 7 Hz, 1H, 8-H), 8.00 (br s, 1H, In-NH); MS m/z (%) 329 (M⁺, 18), 282 (20), 254 (54), 239 (24), 238 (71), 184 (50), 171 (42), 170 (100), 169 (83), 149 (27). Anal. Calcd for C₁₉H₂₇N₃O₂: C, 69.27; H, 8.26; N, 12.76. Found: C, 69.43; H, 8.59; N, 12.71. 11-Amino-7,8,9,10,11,12,13,13a-octahydropyrido[1',2':1,2]pyrazino[4,3-a]indole (25, higher Rf, 6 mg, 27%): ¹H NMR 1.25 (t, J = 7 Hz, 6H, CH₃), 1.85 (t, J = 12 Hz, 1H, 13-H_a), 1.90-2,10 (br s, 2H, NH₂), 2.45 $(d, J = 12 \text{ Hz}, 1H, 13 - H_e), 2.75 - 2.80 \text{ (m, 2H, 7-H)}, 2.95 \text{ (dd, } J = 12 \text{ and 3 Hz}, 1H, 10 - H_a), 3.05 \text{ (br s, 1H, 11-H_a)}$ H_e), 3.05-3.15 (m, 1H, 8- H_e), 3.40 (br d, J = 12 Hz, 1H, 10- H_e), 3.50-3.65 (m, 4H, OC H_2 CH₃), 4.02 (td, J = 12 Hz, 1H, 10- H_e), 3.50-3.65 (m, 4H, OC H_2 CH₃), 4.02 (td, J = 12 Hz, 1H, 10- H_e), 3.50-3.65 (m, 4H, OC H_2 CH₃), 4.02 (td, J = 12 Hz, 1H, 10- H_e), 3.50-3.65 (m, 4H, OC H_2 CH₃), 4.02 (td, J = 12 Hz, 1H, 10- H_e), 3.50-3.65 (m, 4H, OC H_2 CH₃), 4.02 (td, J = 12 Hz, 1H, 10- H_e), 3.50-3.65 (m, 4H, OC H_2 CH₃), 4.02 (td, J = 12 Hz, 1H, 10- H_e), 3.50-3.65 (m, 4H, OC H_2 CH₃), 4.02 (td, J = 12 Hz, 1H, 10- H_e), 3.50-3.65 (m, 4H, OC H_2 CH₃), 4.02 (td, J = 12 Hz, 1H, 10-J = 12 Hz, 1H, 12 and 4 Hz, 1H, 8-H_a), 4.15 (dd, J = 12 and 4 Hz, 1H, 13a-H), 6.20 (s, 1H, 1-H), 7.05 (t, J = 7 Hz, 1H, 3-H), 7.15 (t, J = 7 Hz, 1H, 4-H), 7.25 (d, J = 7 Hz, 1H, 5-H), 7.55 (d, J = 7 Hz, 1H, 2-H).

3-Amino-4,4-diethoxy-1-(2-hydroxyethyl)-2-[1-(phenylsulfonyl)-2-indolyl]piperidine (26). Operating as for the preparation of compounds **21** and **22,** from piperidine **16** (121 mg, 0.21 mmol), Me₂S (0.27 ml, 6.28 mmol), BF₃.Et₂O (0.31 ml, 2.51 mmol), in dry CH₂Cl₂ (8 ml), aminoalcohol **26** (41 mg, 40%) was obtained, after flash chromatography (CH₂Cl₂-MeOH, 95:5): IR (NaCl) 3500-3100 (OH and NH) cm⁻¹; ¹H NMR 1.15 and 1.35 (2 t, J = 7 Hz, 3H each, CH₃), 1.65 (br t, J = 12 Hz, 1H, 5-H_a), 1.62 (br d, J = 12 Hz, 1H, 5-H_e), 1.95 (td, J = 12 and 3 Hz, 1H, 6-H_a), 2.10-2.20 (m, 1H, NCH_A), 2.60-2.70 (m, 1H, NCH_B), 3.00 (s, 1H, 3-H), 3.30-3.40, 3.40-3.55, and 3.55-3.70 (3 m, 6H, OCH₂CH₃ and CH₂OH), 4.67 (d, J = 1Hz, 1H, 2-H_a), 6.95 (s, 1H, In-3H), 7.25-7.55 (m, 6H, Ar-H), 7.80 (d, J = 7 Hz, 2H, Ar-H), 8.32 (d, J = 7 Hz, 1H, In-4H); ¹³C NMR 15.2 and 15.4 (CH₃), 27.4 (C-5), 52.9 (C-3), 54.9 (C-6), 55.0 (NCH₂), 55.2 and 55.3 (OCH₂CH₃), 58.6 (CH₂OH), 60.3 (C-2), 99.9 (C-4), 113.2 (In-C3), 115.0 (In-C7), 121.0 (In-C4), 123.7 (In-C5), 124.6 (In-C6), 126.6 (Ph-o), 129.1 (Ph-m), 133.8 (Ph-p), 136.9 (In-C7a), 138.9 (Ph-ipso); MS m/z (%) 487 (M⁺, 1), 456 (1), 410 (21), 396 (9), 332 (46), 329 (43), 254 (20), 201(78), 189 (72), 157 (85), 130 (100), 84 (51). Anal. Calcd for C₂5H₃3N₃O₅S: C, 61.58; H, 6.82; N, 8.62. Found: C, 61.39; H, 6.53; N, 8.41.

Treatment of alcohol 26 with K^t**BuO** (8 and 27). Operating as for the preparation of compounds 24 and 25, from piperidine 26 (98 mg, 0.20 mmol) and recently sublimated K^tBuO (90 mg, 0.81 mmol), in THF (6 ml), compounds 8 and 27 were isolated after flash chromatography (CH₂Cl₂-MeOH, 97:3). **1-Aminoindolo[2,3-a]quinolizidine 8** (lower Rf, 7 mg, 8%): IR (NaCl) 3250-3300 (NH₂), 2750-2800 (Bohlman) cm⁻¹; ¹H NMR 1.20 and 1.25 (2 t, J = 7 Hz, 3H each, CH₃), 1.70-1.80 (br s, 2H, NH₂), 1.98-2.00 (m, 1H, 3-H_e), 2.48 (td, J = 12 and 5 Hz, 1H, 3-H_a), 2.61 (td, J = 12 and 5 Hz, 1H, 7-H_a), 2.70 (dm, J = 12 Hz, 1H, 6-H_e), 2.82 (dt, J = 12

and 3 Hz, 1H, 7-H_e), 2.84-3.00 (m, 2H, 4-H_a and 6-H_a), 3.02 (br dd, J = 12 and 5 Hz, 1H, 4-H_e), 3.30 (br s, J = 5 Hz, 1H, 1-H_e), 3.50-3.60 (m, 4H, OC H_2 CH₃), 3.74 (br s, 1H, 12b-H), 7.05 (t, J = 7 Hz, 1H, 9-H), 7.10 (t, J = 7 Hz, 1H, 10-H), 7.25 (d, J = 7 Hz, 1H, 11-H), 7.45 (d, J = 7 Hz, 1H, 8-H), 8.00 (br s, 1N, In-NH); MS m/z (%) 329 (M+, 38), 284 (83), 254 (56), 234 (94), 184 (76), 169 (92), 171 (100), 156 (42), 126 (40). Anal. Calcd for C₁₉H₂₇N₃O₂: C, 69.27; H, 8.26; N, 12.76. Found: C, 69.54; H, 8.12; N, 12.37. **13-Amino-7,8,9,10,11,12,13,13a-octahydropyrido[1',2':1,2]pyrazino[4,3-a]indole (27**, higher Rf, 25 mg, 25%): IR (NaCl) 3450-3350 (NH₂) cm⁻¹; ¹H NMR 1.22 and 1.26 (2 t, J = 7 Hz, 3H each, CH₃), 1.60 (br s, 2H, NH₂), 1.90 (br d, J = 12 Hz, 1H, 11-H_e), 2.02 (td J = 12 and 5 Hz, 1H, 11-H_a), 2.46 (td, J = 12 and 3 Hz, 1H, 7-H_a), 2.77 (td, J = 12 and 4 Hz, 1H, 10-H_a), 2.84-2.93 (m, H, 10-H_e), 3.12 (dd, J = 12 and 4 Hz, 1H, 8-H_e), 3.47 (br s, 1H, 13-H_e), 3.50-3.65 (m, 4H, OCH₂CH₃), 3.78 (br s, 1H, 13a-H), 4.00-4.20 (m, 2H, 8-H_a and 7-H_e), 6.26 (br s, 1H, 1-H), 7.08 (t, J = 7 Hz, 1H, 3-H), 7.11 (t, J = 7 Hz, 1H, 4-H), 7.26 (d, J = 7 Hz, 1H, 5-H), 7.55 (d, J = 7 Hz, 1H, 2-H); MS m/z (%) 329 (M+, 29), 284 (100), 270 (17), 255 (48), 238 (77), 171 (91), 156 (24), 114 (24). Anal. Calcd for C₁₉H₂₇N₃O₂: C, 69.27; H, 8.26; N, 12.76. Found: C, 69.33; H, 8.50; N, 12.54.

Indolo[2,3-a]quinolizidin-2-one Oxime (29).²⁰ Operating as for the preparation of oximes 13 and 14, from quinolizidone 2810 (490 mg, 2.04 mmols), NH2OH.HCl (284 mg, 4.08 mmol), and K2CO3 (564 mg, 4.08 mmol), in dry DME (30 ml), heating at 60°C for 3 h, oximes (Z)-29 and (E)-29 were isolated after flash chromatography (CH₂Cl₂-MeOH, 97:3). Oxime (E)-29 (higher Rf, 234 mg, 45%): IR (KBr) 3289 (OH) cm⁻¹; ¹H NMR (CDCl₃ + drops of CD₃OD) 2.20-2.30 (ddd, J = 13, 12 and 6 Hz, 1H, 3-H_a), 2.35 (dd, J = 13 and 11 Hz, 1H, 1-H_a), 2.52 (td, J = 12 and 2 Hz, 1H, 7-H_a), 2.70 (td, J = 12 and 4 Hz, 1H, 4-H_a), 2.81 (br d, J = 12 and 5 Hz, 1H, 1-H_a), 2.81 (br d, J = 12 (br 13 Hz, 1H, 7-H_e), 2.92 (dt, J = 13 and 2 Hz, 1H, 1-H_e), 2.95-3.12 (m, 1H, 6-H_a), 3.16-3.24 (m, 2H, 3-H_e and $6-H_e$), 3.34-3.38 (br d, J = 12 Hz, 1H, 4-H_e), 3.44 (dd, J = 11 and 2 Hz, 1H, 12b-H_a), 7.07 (t, J = 7 Hz, 1H, 9-H), 7.09 (t, J = 7 Hz, 1H, 10-H), 7.37 (d, J = 7 Hz, 1H, 11-H), 7.48 (d, J = 7 Hz, 1H, 8-H); 13 C NMR (CDCl₃) + drops of CD₃OD) 21.1 (C-7), 24.0 (C-3), 34.8 (C-1), 52.2 (C-6), 53.3 (C-4), 59.4 (C-12b), 107.1 (In-C7b), 110.8 (C-11), 117.7 (C-8), 118.8 (C-9), 121.0 (C-10), 126.5 (C-7a), 133.1 (C-12a), 136.2 (C-11a), 156.3 (C-12a), 136.2 (C-12a) 2); MS m/z (%) 256 (M++1, 73), 239 (23), 238 (75), 209 (18), 197 (39), 182 (23), 170 (28), 169 (100), 168 (32), 156 (22), 153 (22). Anal. Calcd for C₁₅H₁₇N₃O: C, 70.56; H, 6.71; N, 16.46. Found: C, 70.53; H, 6.70; N, 16.35. Oxime (Z)-29 (lower Rf, 250 mg, 48%): IR (KBr) 3300-3280 (OH) cm⁻¹; ¹H NMR (CDCl₃ + drops of CD₃OD) 2.08 (dd, J = 13 and 12 Hz, 1H, 1-H_a), 2.44 (br d, J = 12 Hz, 1H, 1-H_e), 2.48-2.58 (m, 1H, $3-H_a$, 2.60 (m, 1H, 7-H_a), 2.70 (td, J=11 and 4 Hz, 1H, 4-H_a), 2.80 (br d, J=13 Hz, 1H, 7-H_e), 2.95-3.10 $(m, 1H, 6-H_a), 3.15-3.24$ $(m, 2H, 3-H_e)$ and $(6-H_e), 3.42$ $(br d, J = 12 Hz, 1H, 4-H_e), 3.79$ $(dm, J = 12 Hz, 1H, 4-H_e), 3.79$ 12b-H_a), 7.08 (br t, J = 7 Hz, 1H, 9-H), 7.14 (br t, J = 7 Hz, 1H, 10-H), 7.34 (br d, J = 7 Hz, 1H, 11-H), 7.47 (br d, J = 7 Hz, 8-H), 9.25 (br s, 1H, In-NH); ¹³C NMR (CDCl₃ + drops of CD₃OD) 21.3 (C-7), 28.2 (C-3), 31.0 (C-1), 52.5 (C-6), 54.6 (C-4), 58.2 (C-12b), 107.6 (In-C7b), 110.9 (C-11), 117.9 (C-8), 119.0 (C-9), 121.3 (C-10), 126.7 (C-7a), 135.5 (C-11a), 156.2 (C-2). Anal. Calcd for C₁₅H₁₇N₃O.1/2 H₂O: C, 68.15; H, 6.86; N, 15.89. Found: C, 67.70; H, 6.61; N, 15.62.

Neber rearrangement on oxime 29 to give 24, 8, and 31. Operating as for the preparation of compounds 15 and 16, from a 1:1 mixture of oximes 29 (250 mg, 0.98 mmol), TsCl (186 mg, 0.98 mmol), and K₂CO₃ (270 mg, 1.96 mmol) in dry THF (10 ml), a 1:1 mixture of the corresponding tosyloximes (400 mg, quantitative)

was obtained, which was used without further purification. Tosyloximes (from a 1.5:1 mixture of E:Ztosyloximes obtained once): ¹H NMR 2.43 and 2.44* (2 s, 3H each, Tos-C H_3), 3.33 (br d, J = 12 Hz, 1H, 12b-H_a), 3.65* (br d, J = 12 Hz, 1H, 12b-H_a'), 7.00-7.70 (m, In-H), 7.35 and 7.37* (2 d, J = 7 Hz, 2Heach, Tos-o), 7.89 and 7.90* (2 d, J = 7 Hz, 2H each, Tos-m), 8.10 and 8.25* (2 br s, In-NH); 13 C NMR 21.4* and 21.6 (Tos-CH₃), 21.6* and 21.7 (C-7), 26.5 and 30.7* (C-3), 30.9* and 35.3 (C-1), 52.0* and 51.8 (C-6), 52.9 and 53.9* (C-4), 57.4* and 58.5 (C-12b), 111.1and 111.2* (C-11), 118.0* and 118.1(C-8), 119.3* and 119.5 (C-9), 121.6* and 122.7 (C-10), 165.5* and 165.8 (C-2). From the above tosyloximes (400 mg, 0.98 mmol), potassium (115 mg, 2.94 matg), and MgSO₄ (400 mg) in dry EtOH (20 ml), an oil was obtained, which was flash chromatographed (CH₂Cl₂-MeOH, 98:2) to isolate compounds 24 (lower Rf, 26 mg, 8%), 8 (intermediate Rf, 103 mg, 32%), and 31 (higher Rf, 35 mg, 11%). trans-1-Amino-2,2-diethoxyindolo[2,3alquinolizidine (31): IR (NaCl) 3200 (In-NH and NH₂), 2800-2750 (Bohlman) cm⁻¹; ¹H NMR 1.20 and 1.25 $(2 t, J = 7 Hz, 3H each, CH_3), 1.80 (br s, 2H, NH_2), 1.95-2.20 (m, 1H, 3-H_e), 2.55 (td, J = 12 and 5 Hz, 1H, 3-H_e)$ $3-H_a$), 2.68 (td, J=12 and 5 Hz, 1H, $7-H_a$), 2.72 (br s, 1H, $7-H_e$), 2.77 (td, J=12 and 4 Hz, 1H, $6-H_a$), 2.87 (dt, J = 12 and 5 Hz, 1H, 4-He), 2.94 (d, J = 10 Hz, 1H, 1-Ha), 3.00 (dm, J = 12 Hz, 1H, 6-He), 3.06-3.15 (m, J = 12 Hz, 1H, 4-He), 3.06-3.15 (m, J = 12 Hz, 1Hz, 1Hz), 3.06-3.15 (m, J = 12 Hz, 1Hz, 1Hz), 3.06-3.15 (m, J = 12 Hz, 1 Hz), 3.06-3.15 (m, J = 12 Hz), 3.06-3.11H, 4-H_a), 3.30 (d, J = 10 Hz, 1H, 12b-H_a), 3.50-3.70 (m, 4H, OCH₂CH₃), 7.05 (t, J = 7 Hz, 1H, 9-H), 7.10 (t, J = 7 Hz, 1H, 10-H), 7.30 (d, J = 7 Hz, 1H, 11-H), 7.50 (d, J = 7 Hz, 1H, 8-H); MS m/z (%) 329 (M⁺, 38),284 (83), 238 (94, (171 (100).

1-Amino-2,2-diethoxyindolo[2,3-a]quinolizidine Methyl Carbamate (32). Operating as for the preparation of carbamate **18**, from aminoquinolizidine **8** (70 mg, 0.21 mmol), K_2CO_3 (75 mg), and methyl chloroformate (0.02 ml, 0.255 mmol) in dry acetone (3 ml), at room temperature, carbamate **32** (81 mg, 99%) was obtained. IR (KBr) 3422 and 3320 (In-NH and OCONH), 1696 (CO) cm⁻¹; ¹H NMR 1.16 and 1.24 (2 t, J = 7 Hz, 3H each, CH₃), 1.76 and 1.88** (td, J = 14 and 5 Hz, and br s, 1H, 3-H_a), 2.00 (dt, J = 14 and 2 Hz, 1H, 3-H_e), 2.46 (td, J = 12 and 2 Hz, 1H, 7-H_a), 2.61 (td, J = 12 and 4 Hz, 1H, 6-H_a), 2.70 (br d, J = 14 Hz, 1H, 4-H_e), 2.84 (br d, J = 12 Hz, 1H, 6-H_e), 2.91 (br t, J = 14 Hz, 1H, 4-H_a), 3.06 (dd, J = 11 and 5 Hz, 1H, 1-H_e), 3.43 (s, 3H, OCH₃), 3.50-3.60 and 3.60-3.70 (2 m, 3H and 1H, OCH₂CH₃), 3.80 (br s, 1H, 12b-H_a), 4.35** and 5.60 (2 d, J = 11 Hz, 1H, CONH), 7.05 (t, J = 7 Hz, 1H, 9-H), 7.10 (t, J = 7 Hz, 1H, 10-H), 7.28 (d, J = 7 Hz, 1H, 11-H), 7.42 (d, J = 7 Hz, 1H, 8-H), 8.22 (br s, 1H, In-NH); ¹³C NMR 15.2 (CH₃), 21.3 (C-7), 29.1 (C-3), 51.5 (C-1), 51.6 (C-6), 52.8 (C-4), 52.1 (NCH₃), 55.5 and 56.0 (OCH₂CH₃), 60.5 (C-12b), 99.1 (C-2), 110.0 (C-7b), 111.2 (C-11), 117.7 (C-8), 119.4 (C-9), 121.3 (C-10), 127.1 (C-7a), 132.2 (C-11a), 136.3 (C-12a), 157.4 (C=O); MS m/z (%) 387 (M+, 13), 342 (38), 312 (31), 296 (30), 268 (30), 267 (100), 239 (28), 197 (20), 184 (28), 169 (36). Anal. Calcd for C₂₁H₂₈N₃O₄: C, 65.27; H, 7.30; N, 10.87. Found: C, 65.32; H, 7.45; N, 10.51.

17-Azaeburna derivative (33). Operating as for the preparation of tetracycle 19, from carbamate 32 (83 mg, 0.21 mmol), NaH (10 mg, 0.25 mmol, 60% in oil), in dry THF (6 ml), 17-azaeburna derivative 33 (46 mg, 60%) was obtained, after flash chromatography (CH₂Cl₂-MeOH, 93:7). IR (NaCl) 3300 (NH), 1702 (CO) cm⁻¹; MS m/z (%) 355 (M⁺, 21), 326 (4), 239 (40), 197 (100), 158 (35), 130 (18), 84 (28). Anal. Calcd for C₂₀H₂₅N₃O₃: C, 67.58; H, 7.09; N, 11.82. Found: C, 67.32; H, 7.48; N, 11.26.

^{*} The asterisk indicates the signals of the minor isomer (Z).

^{**} The double asterisk indicates signals splitted due to rotamers.

17-Azaeburna derivative (2). Operating as for the preparation of compound 20, from compound 33 (25 mg, 0.07 mmol), NaH (6 mg, 0.14 mmol, 60% in oil), and CH₃I (5 μ l, 0.08 mmol) in dry THF (3 ml), compound 2 (26 mg, 99%) was obtained, after flash chromatography (CH₂Cl₂-MeOH, 93:7). IR (NaCl) 1687 (CO) cm¹; MS m/z (%) 369 (M⁺, 11), 253 (25), 212 (16), 211 (100), 158 (33), 130 (13), 84 (17). Anal. Calcd for C₂₁H₂₇N₃O₃: C, 68.27; H, 7.34; N, 11.37. Found: C, 68.39; H, 7.51; N, 11.20.

REFERENCES AND NOTES

- 1. For part X, see: Diez, A.; Voldoire, A.; López, I.; Rubiralta, M.; Segarra, V.; Pagès, Ll.; Palacios, J.M. *Tetrahedron*, 1995, 51, 5143-5156.
- 2. a) Rubiralta, M.; Diez, A.; Bosch, J.; Solans, X. J. Org. Chem., 1989, 54, 5591-5597; b) Rubiralta, M. Diez, A.; Vila, C.; Troin, Y.; Feliz, M. J. Org. Chem., 1991, 56, 6292-6298.
- 3. a) Bosch, J.; Rubiralta, M.; Moral, M.; Valls, M. J. Heterocycl. Chem., 1983, 20, 595-605; b) For a study on the synthesis and synthetic applications of 2-aryl-4-piperidones, see: "Piperidine. Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives", Rubiralta, M.; Giralt, E.; Diez, A., Elsevier Ed., Amsterdam, 1991, pp 313-421.
- 4. For the biogenetic numbering, see: a) Southon, I.W.; Buckingham, J. "Dictionary of Alkaloids", Chapman and Hall. London, 1989. p. xxxix; b) Szántay, Cs.; Nemes, A., "The Eburnamine-Vincamine Group", in *The Monoterpenoid Indole Alkaloids*, Saxton, J.E. John Wiley. New York, 1983.
- 5. For recent total synthesis of (±)-eburnamonine, see: a) Da Silva Goes, A.; Ferroud, C.; Santamaria, J. *Tetrahedron Lett.*, **1995**, 36, 2235-2238; b) Kaufman, M.D.; Grieco, P. A. J. Org. Chem., **1994**, 59, 7197-7198; c) Karvinen E.; Lounasmaa, M. *Heterocycles*, **1992**, 34, 1773-1782.
- 6. Melnyk, P.; Legrand, B.; Gasche, J.; Ducrot, P.; Tnal, C. Tetrahedron, 1995, 51, 1941-1952.
- 7. Hammer, H.; Winterfeldt, E. Tetrahedron, 1981, 37, 3609-3613.
- 8. For the synthesis of (±)-1-aminoindolo[2,3-a]quinolizidines, see: a) Melnyk, P.; Ducrot, P.; Thal, C. *Tetrahedron*, 1993, 49, 8589-8596; b) Melnyk, P.; Ducrot, P.; Thal, C. *Tetrahedron Lett.*, 1993, 34, 5085-5088.
- 9. Schmitt, P.; Melnyk, P.; Bourde, O.; Demuynck, L.; Pujol, J.-F.; Thal, C Med. Chem. Res., 1993, 3, 24-33.
- 10. Brown, R. E.; Hansen, V.; Lustgartn, D. M.; Stanaback, R. J.; Meltzer, R. I. J. Org. Chem., 1968, 33, 4180-4184.
- 11. Fan, W-H.; Parikh, M.; Snyder, J. Tetrahedron Lett., 1995, 36, 6591-6594.
- 12. Rubiralta, M.; Diez, A.; Vila, C. Tetrahedron, 1990, 46, 4443-4456.
- 13. Grobelny, D.; Máslak, P.; Witck, S. Tetrahedron Lett., 1979, 2639-2642.
- For the standard experimental conditions for hydrolysis of 4-piperidones 4,4-ethyleneacetals, see: a)Diez,
 A.; Tona, M.; Rubiralta, M. Tetrahedron, 1990, 46, 4393-4406; b) Rubiralta, M.; Diez, A.; Vila, C.;
 Castells, J.; López, I., Heterocycles, 1992, 34, 643-650.
- 15. The retro-Michael ring opening of piperidones in the hydrolytic conditions to give the corresponding enones has been observed in some cases. ^{16d} However, these enones usually cyclize spontaneously to regenerate the piperidones. In the present case, a small amount of a pure compound was systematically

- isolated from the mixture obtained. From the complex spectral data that this anomalous compound showed, we could only infer that it was a dimeric structure, which we could not elucidate, not even with the MS spectrum and the 2D NMR experiments.
- For debenzylation methods using a Lewis acid as the oxigen coordinating agent combined with an electron donor, see: BF₃.Et₂O/Me₂S: a) Fuji, K.; Kawabata, Y.; Fujita, E. Chem. Pharm. Bull., 1980, 28, 3662-3664; b) Diez, A.; Vila, C.; Sinibaldi, M.-E.; Troin, Y.; Rubiralta, M. Tetrahedron Lett., 1993, 34, 733-736. AlCl₃/PhNMe₂: c) Akiyama, T.; Hirofuji, H, Ozaki, S. Tetrahedron Lett., 1991, 32, 1321-1324; d) Rubiralta, M.; Diez, A.; Vila, C.; Bettiol, J.-L.; Troin, Y.; Sinibaldi, M.-E. Tetrahedron Lett., 1992, 33, 1233-1236.
- 17. a) Stork, G.; Zhao, K. *Tetrahedron Lett.*, **1989**, *30*, 287-290; b) Micouin, L.; Diez, A.; Castells, J.; López, D.; Rubiralta, M.; Quirion, J.-C.; Husson, H.-P. *Tetrahedron Lett.*, **1995**, *36*, 1693-1696; c) Forns, P.; Diez, A.; Rubiralta, M.; Solans, X.; Font-Bardia, M. *Tetrahedron*, **1996**, *52*, 3563-3574.
- 18. Rubiralta, M.; Luque, J.; Orozco, M.; Diez, A.; López, I., Heterocycles, 1992, 34, 449-456.
- 19. For the conformational study of benzo[a]quinolizidines, see: Rubiralta, M.; Diez, A.; Bosch, J.; Feliz, M.; Solans, X. *Heterocycles*, **1988**, 27, 1653-1664 and references cited therein. For the conformational study of indolo[2,3-a]quinolizidines, see references 2 and 12.
- 20. Scheiber, P.; Nemes, P. Heterocycles, 1995, 41, 2189-2194.

(Received in UK 2 April 1996; accepted 25 April 1996)